Guiding Search in Continuous State-action Spaces by Learning an Action Sampler from Off-target Search Experience

نویسندگان

  • Beomjoon Kim
  • Leslie Pack Kaelbling
  • Tomás Lozano-Pérez
چکیده

In robotics, it is essential to be able to plan efficiently in highdimensional continuous state-action spaces for long horizons. For such complex planning problems, unguided uniform sampling of actions until a path to a goal is found is hopelessly inefficient, and gradient-based approaches often fall short when the optimization manifold of a given problem is not smooth. In this paper, we present an approach that guides search in continuous spaces for generic planners by learning an action sampler from past search experience. We use a Generative Adversarial Network (GAN) to represent an action sampler, and address an important issue: search experience consists of a relatively large number of actions that are not on a solution path and a relatively small number of actions that actually are on a solution path. We introduce a new technique, based on an importance-ratio estimation method, for using samples from a non-target distribution to make GAN learning more data-efficient. We provide theoretical guarantees and empirical evaluation in three challenging continuous robot planning problems to illustrate the effectiveness of our algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guiding the search in continuous state-action spaces by learning an action sampling distribution from off-target samples

In robotics, it is essential to be able to plan efficiently in highdimensional continuous state-action spaces for long horizons. For such complex planning problems, unguided uniform sampling of actions until a path to a goal is found is hopelessly inefficient, and gradient-based approaches often fall short when the optimization manifold of a given problem is not smooth. In this paper we present...

متن کامل

Continuous-action reinforcement learning with fast policy search and adaptive basis function selection

As an important approach to solving complex sequential decision problems, reinforcement learning (RL) has been widely studied in the community of artificial intelligence and machine learning. However, the generalization ability of RL is still an open problem and it is difficult for existing RL algorithms to solve Markov decision problems (MDPs) with both continuous state and action spaces. In t...

متن کامل

Discrete Sequential Prediction of Continuous Actions for Deep RL

It has long been assumed that high dimensional continuous control problems cannot be solved effectively by discretizing individual dimensions of the action space due to the exponentially large number of bins over which policies would have to be learned. In this paper, we draw inspiration from the recent success of sequenceto-sequence models for structured prediction problems to develop policies...

متن کامل

Qualitative Transfer for Reinforcement Learning with Continuous State and Action Spaces

In this work we present a novel approach to transfer knowledge between reinforcement learning tasks with continuous states and actions, where the transition and policy functions are approximated by Gaussian Processes (GPs). The novelty in the proposed approach lies in the idea of transferring qualitative knowledge between tasks, we do so by using the GPs’ hyper-parameters used to represent the ...

متن کامل

Transfer Learning for continuous State and Action Spaces

Transfer learning focuses on developing methods to reuse information gathered from a source task in order to improve the learning performance in a related task. In this work, we present a novel approach to transfer knowledge between tasks in a reinforcement learning (RL) framework with continuous states and actions, where the transition and policy functions are approximated by Gaussian processe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017